1. Interpretation of partial derivatives. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Check that $D_{j} f\left(x_{1}, \ldots, x_{n}\right)$ is the derivative at x_{j} of the function $t \mapsto f\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)$.
2. Linear forms. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear map (such an L is called a linear form). Write $L\left(x_{1}, \ldots, x_{n}\right)$ more explicitly. Why can we say that a linear form $L: \mathbb{R} \rightarrow \mathbb{R}$ is "just a number"?
3. The derivative of a linear map is the map itself. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear form. Show that L is differentiable, and that $\forall c \in \mathbb{R}^{n}, d L(c)=L$.
4. A computation of partial derivatives. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. We define a function f on $\mathbb{R}^{*} \times \mathbb{R}$ by $f(x, y)=\varphi\left(\frac{y}{x}\right)$. Show that f satisfies the relation

$$
x D_{1} f(x, y)+y D_{2} f(x, y)=0
$$

at any point $(x, y) \in \mathbb{R}^{*} \times \mathbb{R}$.
— Problems -
5. Directional derivatives vs continuity. Let f be the function defined on \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{y^{2}}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f admits directional derivatives at $(0,0)$ in any direction. Is f continuous at $(0,0)$?
6. Partial and directional derivatives vs continuity.
(a) (Partial derivatives, but not continuity.) Consider the function

$$
\begin{aligned}
f: & \mathbb{R}^{2} \\
(x, y) \mapsto & \rightarrow \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0) .\end{cases}
\end{aligned}
$$

Show that at the point $(0,0)$, the partial derivatives exist but f is not continuous.
(b) Using this f, check that in general, existence of all directional derivatives at some point c is a stronger requirement than existence of all partial derivatives at c.
7. A function which is \mathcal{C}^{1} but not \mathcal{C}^{2}. Let f be the function defined on \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is \mathcal{C}^{1}. Compute $D_{1} D_{1} f$ and show that it is not continuous.
8. Differentiability vs. continuous differentiability. Let f be the function defined on \mathbb{R}^{2} by

$$
f(x, y)=\left\{\begin{aligned}
x y \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{aligned}\right.
$$

Show that f is differentiable at $(0,0)$ but not \mathcal{C}^{1}.

