- Exercises -

- 1. Interpretation of partial derivatives. Let $f : \mathbb{R}^n \to \mathbb{R}$. Check that $D_j f(x_1, \ldots, x_n)$ is the derivative at x_j of the function $t \mapsto f(x_1, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_n)$.
- 2. Linear forms. Let $L : \mathbb{R}^n \to \mathbb{R}$ be a linear map (such an L is called a linear form). Write $L(x_1, \ldots, x_n)$ more explicitly. Why can we say that a linear form $L : \mathbb{R} \to \mathbb{R}$ is "just a number"?
- 3. The derivative of a linear map is the map itself. Let $L : \mathbb{R}^n \to \mathbb{R}$ be a linear form. Show that *L* is differentiable, and that $\forall c \in \mathbb{R}^n, dL(c) = L$.
- 4. A computation of partial derivatives. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a differentiable function. We define a function f on $\mathbb{R}^* \times \mathbb{R}$ by $f(x, y) = \varphi(\frac{y}{x})$. Show that f satisfies the relation

$$xD_1f(x,y) + yD_2f(x,y) = 0$$

at any point $(x, y) \in \mathbb{R}^* \times \mathbb{R}$.

— Problems —

5. Directional derivatives vs continuity. Let *f* be the function defined on \mathbb{R}^2 by

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Show that f admits directional derivatives at (0,0) in any direction. Is f continuous at (0,0)?

6. Partial and directional derivatives vs continuity.

(a) (Partial derivatives, but not continuity.) Consider the function

$$\begin{split} f: & \mathbb{R}^2 \to \mathbb{R} \\ & (x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases} \end{split}$$

Show that at the point (0,0), the partial derivatives exist but f is not continuous.

- (b) Using this *f*, check that in general, existence of all directional derivatives at some point *c* is a stronger requirement than existence of all partial derivatives at *c*.
- 7. A function which is C^1 but not C^2 . Let *f* be the function defined on \mathbb{R}^2 by

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that *f* is C^1 . Compute D_1D_1f and show that it is not continuous.

8. Differentiability vs. continuous differentiability. Let *f* be the function defined on \mathbb{R}^2 by

$$f(x,y) = \begin{cases} xy\sin(\frac{1}{\sqrt{x^2 + y^2}}) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that *f* is differentiable at (0,0) but not C^1 .